Super-fast Attitude from Accelerometer and Magnetometer#

This novel estimator proposed by [Wu], offers an extremely simplified computation of Davenport’s solution to Wahba’s problem, where the full solution is reduced to a couple of floating point operations, without losing much accuracy, and sparing computational time.

The accelerometer and magnetometer have their normalized observations \(^b\mathbf{a}=\begin{bmatrix}a_x&a_y&a_z\end{bmatrix}^T\), \(^b\mathbf{m}=\begin{bmatrix}m_x&m_y&m_z\end{bmatrix}^T\) in the body frame \(b\).

Their corresponding normalized vectors \(^r\mathbf{a}=\begin{bmatrix}0&0&1\end{bmatrix}^T\) and \(^r\mathbf{m}=\begin{bmatrix}m_N&0&m_D\end{bmatrix}^T\) are such that:

\[a_x^2+a_y^2+a_z^2 = m_x^2+m_y^2+m_z^2 = m_N^2+m_D^2 = 1\]

and they are related by the direction cosine matrix \(\mathbf{C}\in SO(3)\) with the minimization of Wahba’s problem as:

\[\mathrm{min} \big(w\|\,^b\mathbf{a}-\mathbf{C}\,^r\mathbf{a}\|^2+(1-w)\|\,^b\mathbf{m}-\mathbf{C}\,^r\mathbf{m}\|^2\big)\]

where \(w\) is the weight of the accelerometer correlation and \(1-w\) is the one of the magnetometer.

The solution to Wahba’s problem is equivalent to finding the eigenvector of the maximum eigenvalue of Davenport’s matrix \(\mathbf{K}\):

\[\begin{split}\mathbf{K} = \begin{bmatrix} \mathbf{B}+\mathbf{B}-\mathrm{tr}(\mathbf{B})\mathbf{I}_3 & \mathbf{z} \\ && \\ \mathbf{z}^T & \mathrm{tr}(\mathbf{B}) \end{bmatrix}\end{split}\]

where \(\mathrm{tr}\) is the matrix trace, \(\mathbf{I}_3\) is the \(3\times 3\) identity matrix, and the helper arrays are:

\[\begin{split}\begin{array}{rcl} \mathbf{B} &=& w\,^b\mathbf{a}\,^r\mathbf{a}^T + (1-w)\,^b\mathbf{m}\,^r\mathbf{m}^T \\ \mathbf{z} &=& \begin{bmatrix}B_{23}-B_{32}\\B_{31}-B_{13}\\B_{12}-B_{21}\end{bmatrix} \end{array}\end{split}\]

in which \(B_{ij}\) stands for the element of \(\mathbf{B}\) in the \(i\)-th row and the \(j\)-th column.

Note

Indexing is normally starting from zero, especially in computational setups, but the article starts it from one, and it is kept like that in this documentation to coincide with the original document.

The eigenvalues of \(\mathbf{K}\) are given by:

\[\begin{split}\begin{array}{rcl} \lambda_{\mathbf{K},1} &=& \sqrt{(1-w)^2+w^2+2w(1-w)(\alpha m_D+V)} \\ && \\ \lambda_{\mathbf{K},2} &=& \sqrt{(1-w)^2+w^2+2w(1-w)(\alpha m_D-V)} \\ && \\ \lambda_{\mathbf{K},3} &=& -\sqrt{(1-w)^2+w^2+2w(1-w)(\alpha m_D-V)} \\ && \\ \lambda_{\mathbf{K},4} &=& -\sqrt{(1-w)^2+w^2+2w(1-w)(\alpha m_D+V)} \end{array}\end{split}\]

where

\[\begin{split}\begin{array}{rcl} \alpha &=& a_xm_x + a_ym_y + a_zm_z \\ V &=& m_N\sqrt{1-\alpha^2} \end{array}\end{split}\]

The local geomagnetic dip angle \(\theta\in[-\frac{\pi}{2}, \frac{\pi}{2}]\) ensures that \(m_N=\cos\theta>0\) and \(\lambda_{\mathbf{K},1}>\lambda_{\mathbf{K},2}>\lambda_{\mathbf{K},3}>\lambda_{\mathbf{K},4}\).

So, the attitude quaternion should be the eigenvector associated to the eigenvalue \(\lambda_{\mathbf{K},1}\).

The dip angle is not required in the accelerometer-magnetometer configuration, since \(m_D=\alpha\) and \(m_N=\sqrt{1-\alpha^2}\) always holds, and the fundamental solution to \((\mathbf{K}-\mathbf{I})\mathbf{q}=0\) is:

\[\begin{split}\begin{array}{rcl} q_w &=& -a_y(m_N+m_x) + a_xm_y \\ && \\ q_x &=& (a_z-1)(m_N+m_x) + a_x(m_D-m_z) \\ && \\ q_y &=& (a_z-1)m_y + a_y(m_D-m_z) \\ && \\ q_z &=& a_zm_D - a_xm_N - m_z \end{array}\end{split}\]

which shows that the weights are not even necessary. Finally, the normalized quaternion representing the attitude is:

\[\mathbf{q} = \frac{1}{\sqrt{q_w^2+q_x^2+q_y^2+q_z^2}}\begin{pmatrix}q_w & q_x & q_y & q_z\end{pmatrix}\]

This estimator is extremely short and relies solely on linear operations, making it very suitable for low-cost and simple processors. Its accuracy is comparable to that of QUEST and FQA, but it is one order of magnitude faster.

References

[Wu]

Jin Wu, Zebo Zhou, Hassen Fourati, Yuhua Cheng. A Super Fast Attitude Determination Algorithm for Consumer-Level Accelerometer and Magnetometer. IEEE Transactions on Con-sumer Electronics, Institute of Electrical and Electronics Engineers, 2018, 64 (3), pp. 375. 381.10.1109/tce.2018.2859625. hal-01922922 (https://hal.inria.fr/hal-01922922/document)

class ahrs.filters.saam.SAAM(acc: ndarray | None = None, mag: ndarray | None = None, representation='quaternion')#

Super-fast Attitude from Accelerometer and Magnetometer

Parameters:
  • acc (numpy.ndarray, default: None) – N-by-3 array with measurements of acceleration in in m/s^2

  • mag (numpy.ndarray, default: None) – N-by-3 array with measurements of magnetic field in nT

  • representation (str, default: 'quaternion') – Attitude representation. Options are 'rotmat' or 'quaternion'.

Variables:
  • acc (numpy.ndarray) – N-by-3 array with N accelerometer samples.

  • mag (numpy.ndarray) – N-by-3 array with N magnetometer samples.

  • Q (numpy.ndarray, default: None) – N-by-4 Array with all estimated orientations as quaternions, where N is the number of samples. Equal to None when no estimation is performed.

  • A (numpy.ndarray, default: None) – 3-by-3 or N-by-3-by-3 Array with all estimated orientarions as rotation matrices, where N is the number of rotations.

Raises:

ValueError – When dimension of input arrays acc and mag are not equal.

Examples

>>> acc_data.shape, mag_data.shape      # NumPy arrays with sensor data
((1000, 3), (1000, 3))
>>> from ahrs.filters import SAAM
>>> orientation = SAAM(acc=acc_data, mag=mag_data)
>>> orientation.Q.shape                 # Estimated attitudes as Quaternions
(1000, 4)
>>> orientation.Q
array([[-0.09867706, -0.33683592, -0.52706394, -0.77395607],
       [-0.10247491, -0.33710813, -0.52117549, -0.77732433],
       [-0.10082646, -0.33658091, -0.52082828, -0.77800078],
       ...,
       [-0.78760687, -0.57789515,  0.2131519,  -0.01669966],
       [-0.78683706, -0.57879487,  0.21313092, -0.02142776],
       [-0.77869223, -0.58616905,  0.22344478, -0.01080235]])
estimate(acc: ndarray, mag: ndarray) ndarray#

Attitude Estimation

Parameters:
  • acc (numpy.ndarray) – Sample of tri-axial Accelerometer.

  • mag (numpy.ndarray) – Sample of tri-axial Magnetometer.

Returns:

q – Estimated quaternion.

Return type:

numpy.ndarray

Examples

>>> acc_data = np.array([4.098297, 8.663757, 2.1355896])
>>> mag_data = np.array([-28.71550512, -25.92743566, 4.75683931])
>>> from ahrs.filters import SAAM
>>> saam = SAAM()
>>> saam.estimate(acc=acc_data, mag=mag_data)   # Estimate attitude as quaternion
array([-0.09867706, -0.33683592, -0.52706394, -0.77395607])